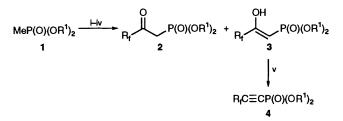
New Synthesis of Dialkyl Fluoroalkynylphosphonates


Yanchang Shen* and Ming Qi

Shanghai Institute of Organic Chemistry, Academia Sinica 345 Lingling Lu, Shanghai 200032, China

A new synthesis of dialkyl fluoroalkynylphosphonates involving trifluoromethanesulfonation and elimination starting from commercially available substances is described.

Many phosphonic acids and their derivatives have been shown to exhibit biological activities.¹ Vinylphosphonates have attracted much interest from synthetic organic chemists.^{2,3} Considerable efforts have recently been made to develop methodologies for the synthesis of fluorinated organic compounds owning to their enhanced biological and physiological activities and fluorine-containing vinylphosphonates are regarded as useful intermediates in organic synthesis.² However, to the best of our knowledge, methods for the preparation of fluoroalkynylphosphonates are still limited. Diphenyl fluoroalkynylphosphonates have been prepared by intramolecular Wittig reaction,⁴ however, the attempted preparation of dialkyl fluoroalkynylphosphonates by this methodology failed as it was not possible to prepare the corresponding dialkoxyphosphorylmethylene(triphenyl)phosphorane.⁵ We now report a new synthetic method for the preparation of dialkyl fluoroalkynylphosphonates in 65-80% yields starting from commercially available substances via trifluoromethanesulfonation and elimination.

Lithium dialkyl methylphosphonate generated from 1 and butyllithium was treated with fluoroalkanoate 5, to give, after distillation, a mixture of 2 and $3,^6$ which can be converted into the fluoroalkynylphosphonate by treatment with trifluoromethanesulfonic anhydride in the presence of N,N-diisopropylethylamine as shown in Scheme 1. The results are summarized in Table 1.

Scheme 1 Reagents and conditions: i, BuLi-THF, -78 °C; ii, $R_1CO_2R^2$ **5**, < -50 °C; iii, 6 mol dm⁻³ HCl, -20 °C; iv, distillation; v, $(CF_3SO_2)_2O$, Pr^i_2NEt , CH_2Cl_2 , 0 °C

Experimental

The mixture of 2 and 3 was prepared according to the method reported by Nickson.⁶

 Table 1
 Preparation of dialkyl fluoroalkynylphosphonates 4

General Procedure for the Preparation of Fluoroalkynylphosphonates 4.—Into a solution of a mixture of 2 and 3 (3 mmol in 3 cm³ of dry CH₂Cl₂), diisopropylethylamine (10.8 mmol) was added at 0 °C under nitrogen, followed by trifluoromethanesulfonic anhydride (3.6 mmol). After being stirred at 0 °C for 4 h, the reaction mixture was diluted with diethyl ether (30 cm³) and filtered, the residue was washed with diethyl ether (2×10 cm³). The filtrate was collected, washed with water (10 cm³), HCl (1 mol dm⁻³; 15 cm³) and dried. Evaporation of the solvent gave a residue which was purified by flash column chromatography to give the product 4.

Diethyl 3,3,3-triffuoroprop-1-ynylphosphonate 4a. B.p. 53 °C/ 10 mmHg (Found: C, 36.35; H, 4.3. $C_7H_{10}F_3O_3P$ requires C, 36.55; H, 4.35%); v(film, neat)/cm⁻¹ 2986s, 2220w, 1253s and 1023s; δ_H (CDCl₃/internal SiMe₄)† 4.27 (m, 4 H) and 1.42 (t, J 7.0, 6 H); δ_F (CDCl₃/external trifluoroacetic acid, positive for downfield shifts 26.1 (s, 3 F); m/z 231 (M + 1), 185, 161 and 93.

Diisopropyl 3,3,3-trifluoroprop-1-ynylphosphonate **4b**. B.p. 56 °C/6 mmHg (Found: C, 41.7; H, 5.6. $C_9H_{14}F_3O_3P$ requires C, 41.9; H, 5.4%); v/cm⁻¹ 2982s, 2220w and 1254s; δ_H 1.40 (d, J7.0, 12 H) and 4.60–5.10 (m, 2 H); δ_F 25.8 (s, 3 F); m/z 259 (M + 1), 201 and 189.

Diethyl 3-chloro-3,3-difluoroprop-1-ynylphosphonate 4c. B.p. 68 °C/7 mmHg (Found: C, 33.8; H, 3.9. $C_7H_{10}ClF_2O_3P$ requires C, 34.1; H, 4.0%). ν/cm^{-1} 2985s, 2220w, 1279s and 1023s; δ_H 1.28 (t, J, 7.0, 6.H) and 3.92–4.40 (m, 4 H); δ_F 37.5 (s, 2 F); m/z 247 (M + 1), 211, 202 and 183.

Diisopropyl 3-chloro-3,3-difluoroprop-1-ynylphosphonate 4d. B.p. 75 °C/7 mmHg (Found: C, 39.05; H, 5.15. C₉H₁₄ClF₂O₃P requires C, 39.3; H, 5.1%); ν/cm^{-1} 2982s, 2220w, 1278s and 1001s; $\delta_{\rm H}$ 1.40 (d, J 7.0, 12 H) and 4.55–5.10 (m, 2-H); $\delta_{\rm F}$ 37.5 (s, 2 F); m/z 275 (M + 1), 256, 232 and 189.

Dimethyl 3-chloro-3,3-difluoroprop-1-ynylphosphonate 4e. B.p. 55 °/10 mmHg (Found: C, 27.1; H, 2.8. $C_5H_6ClF_2O_3P$ requires C, 27.4; H, 2.7%). ν/cm^{-1} 2982s, 2220w, 1278s and 1021s; δ_H 3.88 (d, J 12.5, 6 H); δ_F 36.7 (s, 2 F); m/z 219 (M + 1), 217, 188 and 133.

Diethyl 3,3,4,4,5,5,5-heptafluoropent-1-ynylphosphonate 4f. B.p. 70 °C/9 mmHg (Found: C, 32.4; H, 3.0. $C_9H_{10}F_7O_3P$ requires C, 32.7; H, 3.0%). ν/cm^{-1} 2987s, 2220w, 1234s and

† J Values are given in Hz.

Compo	ound R _f		R ¹	R ²	Yields of $2 + 3(\%)^a$	2:3 ^b	Yields of $4^c (\%)^a$
a	CF	3	Et	Et	92	86:14	80
Ь	CF	3	Pri	Et	81	82:18	75
С	CIC	ČF,	Et	Me	83	78:22	70
d	CIC		Pr ⁱ	Et	88	75:25	65
e	ClC	\mathbf{F}_{2}	Me	Me	85	75:25	65
f		$C_3 \tilde{F_7}$	Et	Et	92	80:20	75

^a Isolated yields. ^b The mixture of 2 and 3 was characterized by ¹H NMR, ¹⁹F NMR and IR spectroscopy. The ratios of 2:3 were estimated on the basis of ¹⁹F NMR spectroscopy. ^c All compounds 4 are new and characterized on the basis of microanalysis, IR and NMR spectroscopy and mass spectrometry.

1024s; $\delta_{\rm H}$ 1.40 (t, J 7.0, 6 H), 4.02–4.50 (m, 4 H); $\delta_{\rm F}$ –2.2 (s, 3 F), –24.1 (s, 2 F), –49.1 (s, 2 F); m/z 331 (M + 1), 285 and 261.

Acknowledgements

The authors thank the National Natural Sciences Foundation of China and Academia Sinica for financial support.

References

1 E. Castaginino, S. Corsano and B. Serema, Gazz. Chim. Ital., 1983, 113, 97; S. Hanissian, Y. L. Bennani and D. Dclorme, Tetrahedron Lett., 1990, 31, 6461.

- 2 T. Minami and J. Motogoshiya, Synthesis, 1992, 333; A. A. Kadyrov and E. M. Rokhlim, Russ. Chem. Rev. (Engl. Tranl.), 1988, 57, 832.
- 3 E. Differding, R O. Duthaler, A. Krieger, G. M. Ruegg and C. Schmit, Synlett, 1991, 395.
 4 Y. Shen, Y. Lin and Y. Xin, Tetrahedron Lett. 1985, 26, 5137.
- 5 G. H. Joneo, E. K. Hamamura and J. G. Moffatt, Tetrahedron Lett., 1968, **9**, 5731.
- 6 T. E. Nickson, J. Org. Chem., 1988, 53, 3870.

Paper 3/03231K Received 7th June 1993 Accepted 13th July 1993